Useful Links: https://wiki rc.usf.edu https://wiki.rc.usf.edu/index.php/Connecting_To_CIRCE https://wiki.rc.usf.edu/index.php/Guide_to_SLURM https://wiki.rc.usf.edu/index.php/CIRCE_Hardware Some Instructions: ************************ Run via X2Go run x2goclient enter net ID and password ssh mdc-1057-13-8 module load apps/cuda/12.2.2 deviceQuery Download anaconda with wget and install it create your virtual env to work in When the ssh connection is lost, the process terminates. If you do not want that to happen you need to use SLURM to submit you jobs. For Slurm You can submit jobs to the new GPU node with SLURM using the muma_2021 partition and muma21 as the qos. To get your job assigned GPUs on the new node, you will need to add the following flag --gres=gpu:1 ************************ useful commands ************************************* cd ~ : your home folder cd /: root (everyones account is there) cd /work_bgfs/user (your working directory) mv mv ~/coach-master/ /work_bgfs/user : move files to work directory (work_bgfs) sinfo : list compute nodes du -hc --max-depth=1 --inodes : quota of inondes in home: max is about 400k: ************************ File transfer ************************************* sftp username@circe.rc.usf.edu put filename lpwd: local working directory pwd: remote working directory lls: local ls:remote ************************ Slurm script ************************************* #!/bin/bash #SBATCH --time=6:00:00 #SBATCH --partition=muma_2021 #SBATCH --qos=muma21 #SBATCH --gres=gpu:1 #SBATCH --output=/home/e/use/Documents/output.%j #SBATCH -e error.%j.%N.txt module load apps/cuda/12.2.2 python your_python_code.py Interactive Session: srun -p muma_2021 -q muma21 --gres=gpu:1 -t 06:00:00 --pty /bin/bash srun -p henderson_itn18 -q hen18 --gres=gpu:1 --pty /bin/bash srun -p henderson_itn18 -q hen18 --gres=gpu:1 --mem=6G -N 1 -n 4 -t 9:55:00 --pty /bin/bash srun --partition=cbcs --qos=preempt --nodes=1 --ntasks=1 --cpus-per-task=6 --time=65:00:00 --mem=120gb --gres=gpu:1 --pty /bin/bash srun --partition=chbme_2018 --qos=preempt --nodes=1 --ntasks=1 --cpus-per-task=6 --time=110:00:00 --mem=5gb --gres=gpu:1 --pty /bin/bash ************************ Instructions on installing Miniconda3 ************************************* cd $HOME wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh chmod +x Miniconda3-latest-Linux-x86_64.sh ./Miniconda3-latest-Linux-x86_64.sh when the installer asks “Do you wish the installer to initialize Miniconda3 by running conda init?”, please answer "yes" log-out of CIRCE/RRA, then log back in which conda pip make sure it returns with: ~/miniconda3/bin/conda and ~/miniconda3/bin/pip pip install --upgrade pip conda update --all -y conda install -y anaconda Once Conda is installed, you can then create virtual environments for each package (or combination of packages) that you may need, including Tensorflow, Keras, OpenCV, gurobipy, numpy, etc. A step-by-step walkthrough of using Conda (including creating Virtual Environments) is located at: Getting started with conda — conda 22.9.0.post96+2abc88b82 documentation ************************ help email ************************************* rc-help@usf.edu