Jeremiah Birrell

Department of Mathematics Texas State University

Reza Ebrahimi

School of Information Systems and Management University of South Florida

Vulnerability of machine learning methods to adversarial attack: Traditional deep learning methods are known to be vulnerable to attacks where a small perturbation of the input (e.g., an image) that is **imperceptible** to a human observer can cause a trained classifier to fail.

Original (PGD) adversarial training method: PGD² trains the loss \mathcal{L}_{θ} by perturbing training samples zwithin a metric-space ball of size ϵ to create adversarial samples \tilde{z} that are then used in training:

$$\inf_{\theta} E_{P_n} \left[\sup_{\tilde{z}: d(z,\tilde{z}) \leq \epsilon} \mathcal{L}_{\theta}(\tilde{z}) \right],$$

where P_n denotes the empirical distribution of the training samples.

PGD is an example of distributionally robust optimization (DRO): In DRO the empirical distribution is replaced by the worst-case adversarial distribution Q in some model neighborhood $\mathcal{U}(P_n)$ around P_n :

$$\inf_{\theta} \sup_{Q \in \mathcal{U}(P_n)} E_Q[\mathcal{L}_{\theta}].$$

Robustness is increased by training for the worst case.

When using adversarial training, the choice of model neighborhood is important for performance!

Robust Optimization and Simulation of Complex Stochastic Systems Sep 13 - 15, 2024

Adversarially Robust Learning with Optimal-Transport Regularized Divergences

ARMOR_D Method¹: Our DRO-based approach improves model robustness by both adversarially transporting (via an optimal transport cost) and adversarially re-weighting (via an information divergence) samples during training.

ARMOR_D can be combined with other popular methods, e.g., that modify the training loss, such as PGD², TRADES³, MART⁴, and UDR⁵ to yield improved performance when under adversarial attack:

	CIFAR10 Performance		
Defense	AutoAttack	PGD ²⁰⁰	Nat.
PGD	42.5%	46.0%	86.40%
UDR-PGD	48.47%	52.95%	81.71%
$ARMOR_{\alpha}$ - UDR - PGD	48.63%	53.62%	80.29%
TRADES	49.1%	51.9%	80.8%
UDR-TRADES	49.9%	53.6%	84.4%
$ARMOR_{\alpha}$ - $TRADES$	51.4%	53.74%	80.76%
MART	48.2%	53.3%	81.9%
UDR-MART	49.1%	54.1%	80.1%
$ARMOR_{\alpha}$ - $MART$	50.6%	56.22%	81.03%

Optimal-Transport Regularized Divergences:

- and C as follows

where

Our work generalizes the optimal-transport DRO results of [6], [7], and is related to the DRO method [8].

References: [1] J. Birrell, M. Ebrahimi, arXiv:2309.03791, 2023

- ICLR, 2020
- ICLR, 2022

 $D^{c}(\nu \| \mu) \coloneqq \inf_{\eta \in \mathcal{P}(\mathcal{Z})} \{ D(\eta \| \mu) + C(\eta, \nu) \}$

C is an **optimal transport cost** for a cost function c, $C(\mu, \nu) \coloneqq \inf_{\pi:\pi_1 = \mu, \pi_2 = \nu} \int c(z, \tilde{z}) \pi(dz d\tilde{z})$

D is an **information divergence**, e.g., an *f*-divergence, $D_f(\mu \| \nu) = E_{\nu}[f(d\mu/d\nu)].$

Properties (under appropriate assumptions): • Divergence property: $D^{c}(\nu \| \mu) \geq 0$ and $D^{c}(\nu \| \mu) = 0$ if and only if $\nu = \mu$. This implies $D^c(\nu \| \mu)$ quantifies the discrepancy between ν and μ .

• **Optimizer:** there **exists a unique optimizer**, η_* , with

 $D^{c}(\nu \| \mu) = D(\eta_{*} \| \mu) + C(\eta_{*}, \nu)$

• DRO neighborhoods: The DRO neighborhoods $\{Q: D^c(Q||P_n) \le \epsilon\}$ are closed convex sets.

• Interpolation property: D^c interpolates between D

 $\lim_{r \to 0^+} r^{-1} D^{rc}(\nu \| \mu) = C(\mu, \nu), \quad \lim_{r \to \infty} D^{rc}(\nu \| \mu) = D(\nu \| \mu)$

Computationally-Tractable Dual-Formulation of Adversarially-Robust Training Problem: We use the D^c -DRO neighborhoods to obtain a novel adversarial training method and, via convex duality, obtain the **computationally tractable form** $\inf_{\theta \in \Theta} \sup_{Q: D_f^c(Q \| P_n) \le \epsilon} E_Q[\mathcal{L}_\theta]$

 $= \inf_{\lambda > 0, \rho \in \mathbb{R}, \theta \in \Theta} \left\{ \epsilon \lambda + \rho + \lambda E_{P_n} \left[f^* (\lambda^{-1} (\mathcal{L}^c_{\theta, \lambda}(z_i) - \rho)) \right] \right\}$

 $\mathcal{L}^{c}_{\theta,\lambda}(z) \coloneqq \sup_{\tilde{z} \in \mathcal{Z}} \{ \mathcal{L}_{\theta}(\tilde{z}) - \lambda c(z, \tilde{z}) \} \,.$

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, ICLR, 2018

[3] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, ICML, 2019

[4] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu,

[5] A. T. Bui, T. Le, Q. H. Tran, H. Zhao, and D. Phung,

[6] P. Mohajerin Esfahani and D. Kuhn, Mathematical Programming, 2018

[7] J. Blanchet and K. Murthy, Mathematics of **Operations Research**, 2019

[8] J. Blanchet, D. Kuhn, J. Li, and B. Taskesen, arXiv:2308.05414, 2023