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Vulnerability of machine learning
methods to adversarial attack:Traditional deep learning methodsare known to be vulnerable to
attackswhere a small perturbationof the input (e.g., an image) that is
imperceptible to a human observercan cause a trained classifier to fail.
Original (PGD) adversarial training
method: PGD2 trains the loss Lθby perturbing training samples zwithin a metric-space ball of size ϵto create adversarial samples z̃ thatare then used in training:

inf
θ

EPn

 sup
z̃:d(z,z̃)≤ϵ

Lθ(z̃)
 ,

where Pn denotes the empiricaldistribution of the training samples.
PGD is an example of distribution-
ally robust optimization (DRO):In DRO the empirical distributionis replaced by the worst-case
adversarial distribution Q in somemodel neighborhood U(Pn) around
Pn:

inf
θ

sup
Q∈U(Pn)

EQ[Lθ] .

Robustness is increased by training
for the worst case.
When using adversarial training,
the choice of model neighborhood
is important for performance!

Robust Optimization and
Simulation of Complex
Stochastic Systems
Sep 13 - 15, 2024

Adversarially Robust Learning
with Optimal-Transport
Regularized Divergences

ARMORD Method1: Our DRO-based approach
improvesmodel robustness by both adversarially
transporting (via an optimal transport cost) and
adversarially re-weighting (via an informationdivergence) samples during training.
ARMORD can be combined with other popularmethods, e.g., that modify the training loss, suchas PGD2, TRADES3, MART4, and UDR5 to yield
improved performance when under adversarialattack:

CIFAR10 Performance
Defense AutoAttack PGD200 Nat.
PGD 42.5% 46.0% 86.40%
UDR-PGD 48.47% 52.95% 81.71%
ARMORα-UDR-PGD 48.63% 53.62% 80.29%
TRADES 49.1% 51.9% 80.8%
UDR-TRADES 49.9% 53.6% 84.4%
ARMORα-TRADES 51.4% 53.74% 80.76%
MART 48.2% 53.3% 81.9%
UDR-MART 49.1% 54.1% 80.1%
ARMORα-MART 50.6% 56.22% 81.03%

Optimal-Transport Regularized
Divergences:

Dc(ν∥µ) := inf
η∈P(Z)

{D(η∥µ) + C(η, ν)}

C is an optimal transport cost for a cost function c,
C(µ, ν) := inf

π:π1=µ,π2=ν

∫
c(z, z̃)π(dzdz̃)

D is an information divergence, e.g., an f-divergence,
Df(µ∥ν) = Eν[f (dµ/dν)] .
Properties (under appropriate assumptions):
•Divergence property: Dc(ν∥µ) ≥ 0 and Dc(ν∥µ) = 0
if and only if ν = µ. This implies Dc(ν∥µ) quantifies
the discrepancy between ν and µ.

•Optimizer: there exists a unique optimizer, η∗, with
Dc(ν∥µ) = D(η∗∥µ) + C(η∗, ν)

•DRO neighborhoods: The DRO neighborhoods
{Q : Dc(Q∥Pn) ≤ ϵ} are closed convex sets.

• Interpolation property: Dc interpolates between D

and C as follows
lim

r→0+
r−1Drc(ν∥µ) = C(µ, ν) , lim

r→∞ Drc(ν∥µ) = D(ν∥µ)

Computationally-Tractable Dual-Formulation of
Adversarially-Robust Training Problem: We usethe Dc-DRO neighborhoods to obtain a novel
adversarial training method and, via convexduality, obtain the computationally tractable form

inf
θ∈Θ

sup
Q:Dc

f(Q∥Pn)≤ϵ
EQ[Lθ]

= inf
λ>0,ρ∈R,θ∈Θ

{
ϵλ + ρ + λEPn

[
f ∗(λ−1(Lc

θ,λ(zi) − ρ))
]}

where
Lc

θ,λ(z) := sup
z̃∈Z

{Lθ(z̃) − λc(z, z̃)} .

Our work generalizes the optimal-transport DRO
results of [6], [7], and is related to the DRO
method [8].
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