Jeremiah Birrell **Texas State University** Reza Ebrahimi **University of South Florida Rouzbeh Behnia University of South Florida** 

Jason Pacheco **University of Arizona** 

**DP-SGD** with Fixed-size Minibat**ches:** RDP has been a widely-used accountant for DP-SGD with Poisson subsamling. Fixed-size subsampling is preferred due to constant memory usage. Wang et al.<sup>4</sup> provide the best computable bounds in the fixed-size regime for RDP that are practical for application to DP-SGD. We show that there is room for obtaining tighter bounds specific to DP-SGD with Gaussian noise.

**RDP with Poisson Subsampling:** Given a loss function  $\mathcal{L}$ , a training dataset D with |D| elements, and a fixed minibatch size, we consider the DP-SGD NN parameter updates with fixed-size minibatches,

 $\Theta_{t+1}^D = \Theta_t^D - \eta_t G_t \,,$ 

 $G_t = \frac{1}{|B|} \left( \sum_{i \in B_t^D} \mathsf{Clip}(\nabla_\theta \mathcal{L}(\Theta_t, D_i)) + Z_t \right)$ 

where the noises  $Z_t$  are Gaussians with mean 0 and covariance  $C^2 \sigma_t^2 I$ , and the  $B_{t}^{D}$  are random minibatches with expected size |B|. There are multiple ways to form minibatches,  $B_t$ .

**Poisson subsampling:** Minibatches are formed by iid Bernoulli random variables (chosen sampling probability q) which decide whether each sample is included in the minibatch or not.

## Differentially Private Stochastic **Gradient Descent with Fixed-Size** Minibatches

**Motivation:** DP-SGD with Fixed size subsampling is appealing for its constant memory usage, unlike the variable sized minibatches in Poisson subsampling.

**Contribution:** We present a new and holistic Rényi differential privacy (RDP) accountant for DP-SGD with fixed-size subsampling without replacement (FSwoR) and with replacement (FSwR).

## **Results:**

1) FSwoR accounts for both add/remove and replaceone adjacency, and improves on the best current computable bound by a factor of 4. 2) FSwR includes explicit non-asymptotic upper and lower bounds. DP-SGD gradients with fixed-size subsampling exhibit lower variance in addition to memory usage benefits.







**Disadvantage of Poisson subsampling:** Leads to variable sized minibatches and therefore inconsistent memory usage. It also has higher variance.

Fixed-size subsampling: Constant memory usage, but RDP bounds more difficult to obtain. RDP Bounds for SGD with Poisson Subsampling: First bounds obtained by Abadi et al.<sup>2</sup> and Mironov et al.<sup>3</sup>

**RDP** for Fixed-size Subsampling without Replacement: The first general purpose RDP bounds (i.e., for general  $\mathcal{M}$ ) with fixed-size subsampling obtained by Wang et al.<sup>4</sup>

We obtain tighter RDP bounds for fixed-size subsampled DP-SGD using a Taylor expansion method, with precise bounds on the expansion remainder terms<sup>1</sup>.

 $\epsilon_{[0,T]}(\alpha) \leq$ 

 $\sum_{t=0}^{T-1} \frac{1}{\alpha - 1} \log \left| 1 + q^2 \alpha (\alpha - 1) \left( e^{4/\sigma_t^2} - e^{2/\sigma_t^2} \right) + O(q^3) \right|$ 

• We provide computatable bounds on the  $O(q^3)$  term.

• Our result improves on the RDP bound of Wang et al.<sup>2</sup> by approximately a factor of 4 and is close to the theoretical lower bound<sup>2</sup> in practice. **Conclusion:** As we showed theoretically and empirically, since FSwoR under replace-one adjacency leads to the same leading-order privacy guarantees as the widely-used Poisson subsampling, we suggest using the former over the latter to benefit from the memory management and reduced variance.

**References:** 2024

[2] McMahan, H. B., Mironov, I., Talwar, K., Zhang, L., ACM CCS, 2016 [3] Mironov, I., Talwar, K., Zhang, L., arXiv:1908.10530,

2019

[4] Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P., PMLR, 2019

## Our RDP SGD under Fixed-size Subsampling: T-step FS<sub>woR</sub>-RDP Upper **Bound under Replace-one Adjacency**<sup>1</sup>

[1] J. Birrell, R. Ebrahimi, arxiv.org/pdf/2408.10456,