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Artificial Intelligence

* “The science and engineering of making intelligent machines.”
* - John McCarthy

* But what is intelligence?
* Learning, reasoning, decision making, problem solving, mimicking human?

* Al and Machine Learning (ML) are often used interchangeably
(roughly).



When Will Al Exceed Human Performance?

Years from 2016
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» “Researchers predict Al will outperform humans in many activities in the next ten years:
translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by
2027), working in retail (by 2031), writing a bestselling book (by 2049), and working as a
surgeon (by 2053).”



Al Beats Human in Recognizing Images

Top-5 Error on ImageNet: Percentage of times the classifier failed to include the right class among its top 5 guesses
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How Al Works

* Let’s do a fun exercise together!

* This exercise reveals how Al works in general.



Exercise: Let’s Read an (AI) Book
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“Hush, little monkey, don’t you cry.
I’ll help you find her,” said Butterfly.
“Let’s have a think. How big is she?”

“She’s big!” said the monkey. “Bigger than me.”

“Bigger than you? Then I've seen your mum.

Come, little monkey, come, come, come.”
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“No, no, no! That’s an elephant.

“My mum isn’t a great grey hunk.
She hasn’t got tusks or a curly trunk.
She doesn’t have great thick baggy knees.

And anyway, her tail coils round trees.”

e coils round trees? T/

dck, little monkey! She's over here.”

n she’s very near.
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“No, no, no! That’s a snake,

“Mum doesn’t look a bit like this.
She doesn’t slither about and hiss.
She doesn’t curl round a nest of eggs.

And anyway, my mum’s got more legs”

“It’s legs we're looking for

[ know where she is, tl

1now, you say?

~ 4 »
1en. Come this way.
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What Have We Learned From This Book?

* Per each group please write your answer to the above question in no
more than 2 lines.

* Who is learning in this story?

* Correct answer wins a nice prize.



What Have We Learned From This Book?

e Objects are described by their properties or features
e E.g.: isBig, hasTail, hasColor, numberOfLimbs...

e Features have values
e Boolean: true/false
e Discrete: brown, white, etc.
 Numerical: 4 for numberOfLimbs



What Have We Learned from this Book?

* Objects are assigned a discrete label, e.g., isMyMom, isNotMyMom

* A learning algorithm (the butterfly in the story) or classifier will learn
how to assign labels to new objects

* Hint: features are important if they lead to the correct decision; less
important otherwise.

* Learning algorithms produce incorrect classifications when not
exposed to sufficient data. This situation is called overfitting.



Let’s Formalize What We Know So Far

Qb/el vectory ]

Label

One example per row

Feature matrix X
One feature per column

isBig hasTail hasTrunk hasColor numberOf
Brown Limbs

isNotMyMom

isNotMyMom
isMyMom
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Use Case: Review Classification

* Review classification = learning algorithms that assign labels to text

* Exercise: what applications of text classification do you know?



IMDB Movie Reviews

Dataset

Filename

Score

Binary
Label

Review Text

train/pos/24_8.txt

8/10

Positive

Although this was obviously a
low-budget production, the per-
formances and the songs in
this movie are worth seeing.
One of Walken’s few musical
roles to date. (he is a mar-
velous dancer and singer and
he demonstrates his acrobatic
skills as well - watch for the
cartwheel!) Also starring Ja-
son Connery. A great children’s
story and very likable charac-
ters.

train/neg/141_3.txt

3/10

Negative

This stalk and slash turkey
manages to bring nothing new
to an increasingly stale genre.
A masked killer stalks young,
pert girls and slaughters them
in a variety of gruesome ways,
none of which are particularly
tnventive. It’s not scary, it’s
not clever, and it’s not funny.
So what was the point of it?
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More Formally...

Feature matrix X
Individual feature: how many times a
: : : Label vectory
given word appears in a review

#  good excellent bad horrible boring Label
#1 1 1 1 0 0 Positive

#2 0 1 1 0 Negative
#3 0 1 0 1 Negative

[ Exercise: how many columns does X have? ]
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The Perceptron
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The Perceptron
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The Perceptron

mro\m the feature matrix X ]
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The Perceptron
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The Perceptron
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A scalar value called a bias term. We
will explain this later.
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The Perceptron
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A scalar value that is the classifier’s
output. If >= 0 we assign one label;
otherwise we assign the other label
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Perceptron Decision Function

Algorithm 1: The decision function of the perceptron.

1 if w-x+b>0 then
2 return Yes

3 else

4 return No

5

end

[ Dot product of two vectors J

Xy = Zmzyz
i=1




Intultion

* If the Yes class is isMyMom then
* We want the weight associated with hasColorBrown to be positive, and
* The weight for hasTrunk to be negative

 Similarly, for review classification (Yes == Positive) we want positive
words to have positive weights, and negative words to have negative
weights.



From Perceptron to Deep Learning

* Perceptron is the building block of a new variant of learning in Al
called deep learning.

* Many perceptron-like units solve a problem together.
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Generative Artificial Intelligence



Generative Artificial Intelligence

* In addition to decision making, deep learning can generate rea-
looking data.

* Let’s see how real they look ...



Which One of These Faces Are Real?

https://www.nytimes.com/interactive/2020/11/21/science/artificial-intelligence-fake-people-faces.html
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https://www.nytimes.com/interactive/2020/11/21/science/artificial-intelligence-fake-people-faces.html

What About This Al-generated Text?

Today, artificial intelligence will do everything that humans are able to do;
there is only one thing that the artificial intelligence can't do and thatis to

think and make decisions in situations where human decision-making is‘

https://app.inferkit.com/demo
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https://app.inferkit.com/demo

‘Text to Image” Generation with Al

‘a heard of zebras in the north pole’ =)
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https://stablediffusionweb.com/#demo
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https://stablediffusionweb.com/#demo

‘Text to Image” Generation with Al

‘Lots of tropical fruits on a dinner table’ -

ol

https//sfablediffusionweb.com/#d"emo
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https://stablediffusionweb.com/#demo

‘Text to Image” Generation with Al

‘Students are worried about the final exam’ m) JNI

https://stablediffusionweb.com/#demo
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https://stablediffusionweb.com/#demo

‘Text to Image” Generation with Al

‘Gourmet chocolate in a hot summer day’ ‘

https://stablediffusionweb.com/#demo
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https://stablediffusionweb.com/#demo

‘Text to Image” Generation with Al

‘A baby laughing and enjoying life’ #
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https://stablediffusionweb.com/#demo

Let’s Revisit an Al-generated Text

* Today, artificial intelligence ...

Today, artificial intelligence will do everything that humans are able to do;
there is only one thing that the artificial intelligence can't do and thatis to

think and make decisions in situations where human decision-making is‘

https://app.inferkit.com/demo
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https://app.inferkit.com/demo

Let’s Play a Guessing Game!

* Fact: By age 10, a child might have heard 100 million words.

* Any guess how many words the Al reads to learn to generate such
text?

* The Al, called GPT-3, was trained on 500,000 million words.

In the future, can we learn like human, with less reading?
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What else is Coming?

« Text to Image: DALL-E and Stable Diffusion [GfeJotnt ¥ [i{elell[14'Ke]

* Text to Text: GPT and Chat GPT @OpenAI
e Text to Voice: VALL-E (Just came out!) Microsoft
e Text to Video: Currently working on it!

(stability.ai)

https://arxiv.org/pdf/2205.15868.pdf
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Looking a Bit Farther ...

* Can you imagine pairing a generative Al model with a 3-D printer?

* Text-to-Real-World-Object-Generation

Exotic Yellow Pot! Oy

We do nOt have it yet, https://creality3d.shop
but it may come soon!
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Exercise

* Within your group, please discuss some applications of Generative Al.
* What other things can be generated other than image and text?

* Could generative Al be used maliciously?



Adversarial Artificial Intelligence



Adversarial Artificial Intelligence

* Generative Al can be used to create malicious inputs that ‘fool’ a
classifier.

* E.g., Manipulate a panda image so that it is identified as a gibbon, a
pig as a plane, ...

* These manipulated inputs are called ‘adversarial examples.



Adversarial Examples
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Adversarial Examples
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https://gradientscience.org/intro_adversarial/
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Adversarial Examples

* Let’s say we want to classify Xs and Os.

0-Stanford-cs213n.pdf

* Can you tell which two examples are adversarial?
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Al Predictions Are (Mostly) Accurate but Brittle

* Glasses that Fool Face Recognition

https://dl.acm.org/doi/pdf/10.1145/2976749.2978392 51



Al Predictions Are (Mostly) Accurate but Brittle

* Graffiti fools image recognition

Original Input Adversarial Input (Attack)

Detected as Stop Sign 2

v

Detected as Speed Limit 45

X

https://openaccess.thecvf.com/content_cvpr_2018/papers/Eykholt_Robust_Physical-World_Attacks_ CVPR_2018_paper.pdf
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Why Is This Brittleness of ML/Al a Problem?

* Security

e Safety

https://www.youtube.com/watch?v=TIUU1xNgl8w
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https://www.youtube.com/watch?v=TIUU1xNqI8w

Exercise

 Can you think of a security / safety scenarios in which adversarial
examples cause serious issues?

* Each group, please provide a scenario in no more than 3 lines.
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Cybersecurity Applications




Cybersecurity Applications: Malware Detection

* In addition to text and image, adversarial examples apply to malware.

Cyber Defense Al Agent

— [UndetectedJ

Original Malware ~ Modified Malware VIRUSTOTAL
File




Other Cybersecurity Applications

e Network Intrusion Detection é’

* Spam detection i

* E-commerce fake reviews detection

 Fake news detection
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Cybersecurity Applications

Cyber Defense Al Agent

Adversarial Input
(Modified Malware)
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Challenges in Al and Cybersecurity



Deep Learning is Far From Perfect

Building Artificial
Intelligence We Can Trust

GARY MARCUS
and ERNEST DAVIS

-

Deep learning is
opaque, brittle, and
has no commonsense

~

/
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Morality in Al (Ethical Al)

“You don't want to examine the basis of your
computer's morality any more than you want to
see sausage being made.”

— JOHN MCCARTHY
One of the founding fathers of Al
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Is Artificial Intelligence Dangerous?

R.L. Adams, contrisutor

‘ ’v.
‘_. > Opinions expressed by Forbes Contributors are their own.

FULL BIO v

>

A
.29
‘Artificial Intelligence is as dangerous as g

NUCLEAR WEAPONS': Al pioneer warns g ﬁ1
smart computers could doom mankind

« Expert warns advances in Al mirrors research that led to nuclear weapons

« He says Al systems could have objectives misaligned with human values

. Companies and the military could allow this to get a technological edge

+ He urges the Al community to put human values at the centre of their work 62
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