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Outline
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Artificial Intelligence (AI)
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The Big Picture

Artificial Intelligence

Machine
Learning

Deep
Learning
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Artificial Intelligence

• “The science and engineering of making intelligent machines.” 
• - John McCarthy

• But what is intelligence?
• Learning, reasoning, decision making, problem solving, mimicking human?

• AI and Machine Learning (ML) are often used interchangeably 
(roughly).
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When Will AI Exceed Human Performance?

• “Researchers predict AI will outperform humans in many activities in the next ten years: 
translating languages (by 2024), writing high-school essays (by 2026), driving a truck (by 
2027), working in retail (by 2031), writing a bestselling book (by 2049), and working as a 
surgeon (by 2053).”

https://arxiv.org/pdf/1705.08807.pdf
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AI Beats Human in Recognizing Images

First Time AI (AlexNet) Surpassed Human Image Recognition in 2015 
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Top-5 Error on ImageNet: Percentage of times the classifier failed to include the right class among its top 5 guesses



How AI Works

• Let’s do a fun exercise together!

• This exercise reveals how AI works in general.
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Exercise: Let’s Read an (AI) Book
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What Have We Learned From This Book?

• Per each group please write your answer to the above question in no 
more than 2 lines.

• Who is learning in this story?

• Correct answer wins a nice prize.
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What Have We Learned From This Book?

• Objects are described by their properties or features
• E.g.: isBig, hasTail, hasColor, numberOfLimbs…

• Features have values
• Boolean: true/false

• Discrete: brown, white, etc.

• Numerical: 4 for numberOfLimbs
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What Have We Learned from this Book?

• Objects are assigned a discrete label, e.g., isMyMom, isNotMyMom

• A learning algorithm (the butterfly in the story) or classifier will learn 
how to assign labels to new objects

• Hint: features are important if they lead to the correct decision; less 
important otherwise.

• Learning algorithms produce incorrect classifications when not 
exposed to sufficient data. This situation is called overfitting. 
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Let’s Formalize What We Know So Far
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Feature matrix X
One example per row

One feature per column Label vector y



Use Case: Review Classification

• Review classification = learning algorithms that assign labels to text

• Exercise: what applications of text classification do you know?
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IMDB Movie Reviews Dataset
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More Formally…
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Feature matrix X
Individual feature: how many times a 

given word appears in a review

Exercise: how many columns does X have?

Label vector y



The Perceptron
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The Perceptron
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The Perceptron
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One row from the feature matrix X



The Perceptron
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Weights that indicate how important 
each feature is

This is what is learned!



The Perceptron
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A scalar value called a bias term. We 
will explain this later.



The Perceptron
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A scalar value that is the classifier’s 
output. If >= 0 we assign one label; 
otherwise we assign the other label



Perceptron Decision Function
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Dot product of two vectors



Intuition

• If the Yes class is isMyMom then
• We want the weight associated with hasColorBrown to be positive, and

• The weight for hasTrunk to be negative

• Similarly, for review classification (Yes == Positive) we want positive 
words to have positive weights, and negative words to have negative 
weights.
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From Perceptron to Deep Learning

• Perceptron is the building block of  a new variant of learning in AI 
called deep learning.

• Many perceptron-like units solve a problem together.
In

p
u

t

Decision
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Generative Artificial Intelligence
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Generative Artificial Intelligence

• In addition to decision making, deep learning can generate rea-
looking data.

• Let’s see how real they look …
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Which One of These Faces Are Real?

https://www.nytimes.com/interactive/2020/11/21/science/artificial-intelligence-fake-people-faces.html 34

https://www.nytimes.com/interactive/2020/11/21/science/artificial-intelligence-fake-people-faces.html


What About This AI-generated Text?

https://app.inferkit.com/demo
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https://app.inferkit.com/demo


‘Text to Image’ Generation with AI

https://stablediffusionweb.com/#demo

‘a heard of zebras in the north pole’
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https://stablediffusionweb.com/#demo


‘Text to Image’ Generation with AI

https://stablediffusionweb.com/#demo

‘Lots of tropical fruits on a dinner table’

37

https://stablediffusionweb.com/#demo


‘Text to Image’ Generation with AI

https://stablediffusionweb.com/#demo

‘Students are worried about the final exam’
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https://stablediffusionweb.com/#demo


‘Text to Image’ Generation with AI

https://stablediffusionweb.com/#demo

‘Gourmet chocolate in a hot summer day’
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https://stablediffusionweb.com/#demo


‘Text to Image’ Generation with AI

https://stablediffusionweb.com/#demo

‘A baby laughing and enjoying life’
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https://stablediffusionweb.com/#demo


Let’s Revisit an AI-generated Text

• Today, artificial intelligence …

https://app.inferkit.com/demo
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https://app.inferkit.com/demo


Let’s Play a Guessing Game!

• Fact: By age 10, a child might have heard 100 million words.

• Any guess how many words the AI reads to learn to generate such 
text?

• The AI, called GPT-3, was trained on 500,000 million words.
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In the future, can we learn like human, with less reading?



What else is Coming?

• Text to Image: DALL-E and Stable Diffusion 

• Text to Text: GPT and Chat GPT

• Text to Voice: VALL-E (Just came out!)

• Text to Video:
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Currently working on it! 
(stability.ai)

https://arxiv.org/pdf/2205.15868.pdf



Looking a Bit Farther …

• Can you imagine pairing a generative AI model with a 3-D printer?

• Text-to-Real-World-Object-Generation
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Exotic Yellow Pot!

We do not have it yet, 
but it may come soon!

https://creality3d.shop



Exercise

• Within your group, please discuss some applications of Generative AI.

• What other things can be generated other than image and text?

• Could generative AI be used maliciously?
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Adversarial Artificial Intelligence
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Adversarial Artificial Intelligence

• Generative AI can be used to create malicious inputs that ‘fool’ a 
classifier.

• E.g., Manipulate a panda image so that it is identified as a gibbon, a 
pig as a plane, …

• These manipulated inputs are called ‘adversarial examples.’
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Adversarial Examples

https://arxiv.org/abs/1412.6572
48



Adversarial Examples

Pig (91%) Add some noise Plane (99%)

https://gradientscience.org/intro_adversarial/
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Adversarial Examples

• Let’s say we want to classify Xs and Os.

• Can you tell which two examples are adversarial?

https://www.iangoodfellow.com/slides/2017-05-30-Stanford-cs213n.pdf
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AI Predictions Are (Mostly) Accurate but Brittle

• Glasses that Fool Face Recognition

https://dl.acm.org/doi/pdf/10.1145/2976749.2978392 51



AI Predictions Are (Mostly) Accurate but Brittle

• Graffiti fools image recognition

https://openaccess.thecvf.com/content_cvpr_2018/papers/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_paper.pdf

Original Input

Modification

Adversarial Input (Attack)

Detected as Stop Sign
Detected as Speed Limit 45 
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Why Is This Brittleness of ML/AI a Problem? 

• Security

• Safety

https://www.youtube.com/watch?v=TIUU1xNqI8w
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https://www.youtube.com/watch?v=TIUU1xNqI8w


Exercise

• Can you think of a security / safety scenarios in which adversarial 
examples cause serious issues?

• Each group, please provide a scenario in no more than 3 lines.
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Cybersecurity Applications
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Cybersecurity Applications: Malware Detection

• In addition to text and image, adversarial examples apply to malware.

Undetected

Cyber Defense AI Agent

Modified MalwareOriginal Malware
File
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Other Cybersecurity Applications

• Network Intrusion Detection

• Spam detection

• E-commerce fake reviews detection

• Fake news detection
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Cybersecurity Applications

Network Intrusion 
Detector

E-commerce Fake 
Reviews Detector

Undetected
Adversarial Input
(Modified Malware)

Cyber Defense AI Agent

• News article

• Network packet

• Customer reviews

Symantec Amazon

• Email

Fake News 
Detector

Facebook

Spam Detector
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Challenges in AI and Cybersecurity
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Deep Learning is Far From Perfect
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Deep learning is 
opaque, brittle, and 

has no commonsense



Morality in AI (Ethical AI)

One of the founding fathers of AI
61
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